Search results for "Poisson input"

showing 2 items of 2 documents

Multiplicative cases from additive cases: Extension of Kolmogorov–Feller equation to parametric Poisson white noise processes

2007

Abstract In this paper the response of nonlinear systems driven by parametric Poissonian white noise is examined. As is well known, the response sample function or the response statistics of a system driven by external white noise processes is completely defined. Starting from the system driven by external white noise processes, when an invertible nonlinear transformation is applied, the transformed system in the new state variable is driven by a parametric type excitation. So this latter artificial system may be used as a tool to find out the proper solution to solve systems driven by parametric white noises. In fact, solving this new system, being the nonlinear transformation invertible, …

Fokker-Planck equation; Itô's calculus; Kolmogorov-Feller equation; Parametric forces; Poisson input; Stochastic differential calculusState variableAerospace EngineeringOcean EngineeringKolmogorov-Feller equationPoisson inputlaw.inventionlawCivil and Structural EngineeringMathematicsParametric statisticsParametric forceMechanical EngineeringMathematical analysisFokker-Planck equationStatistical and Nonlinear PhysicsWhite noiseCondensed Matter PhysicsItô's calculuNonlinear systemNoiseInvertible matrixNuclear Energy and EngineeringFokker–Planck equationStochastic differential calculusPoisson's equationProbabilistic Engineering Mechanics
researchProduct

Direct Derivation of Corrective Terms in SDE Through Nonlinear Transformation on Fokker–Planck Equation

2004

This paper examines the problem of probabilistic characterization of nonlinear systems driven by normal and Poissonian white noise. By means of classical nonlinear transformation the stochastic differential equation driven by external input is transformed into a parametric-type stochastic differential equation. Such equations are commonly handled with Ito-type stochastic differential equations and Ito's rule is used to find the response statistics. Here a different approach is proposed, which mainly consists in transforming the Fokker–Planck equation for the original system driven by external input, in the transformed probability density function of the new state variable. It will be shown …

Kushner equationDifferential equationApplied MathematicsMechanical EngineeringNonlinear transformationMathematical analysisFirst-order partial differential equationFokker-Planck equationAerospace EngineeringOcean EngineeringPoisson inputItô's calculuIntegrating factorStochastic partial differential equationStochastic differential equationQuantum stochastic calculusControl and Systems EngineeringApplied mathematicsFokker–Planck equationStochastic differential calculusElectrical and Electronic EngineeringMathematicsNonlinear Dynamics
researchProduct